Global modelling of continental water storage changes – sensitivity to different climate data sets

نویسنده

  • K. Fiedler
چکیده

Since 2002, the GRACE satellite mission provides estimates of the Earth’s dynamic gravity field with unprecedented accuracy. Differences between monthly gravity fields contain a clear hydrological signal due to continental water storage changes. In order to evaluate GRACE results, the state-of-the-art WaterGAP Global Hydrological Model (WGHM) is applied to calculate terrestrial water storage changes on a global scale. WGHM is driven by different climate data sets to analyse especially the influence of different precipitation data on calculated water storage. The data sets used are the CRU TS 2.1 climate data set, the GPCC Full Data Product for precipitation and data from the ECMWF integrated forecast system. A simple approach for precipitation correction is introduced. WGHM results are then compared with GRACE data. The use of different precipitation data sets leads to considerable differences in computed water storage change for a large number of river basins. Comparing model results with GRACE observations shows a good spatial correlation and also a good agreement in phase. However, seasonal variations of water storage as derived from GRACE tend to be significantly larger than those computed by WGHM, regardless of which climate data set is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate model biases in seasonality of continental water storage revealed by satellite gravimetry

[1] Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low la...

متن کامل

Contribution of climate-driven change in continental water storage to recent sea-level rise.

Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to ...

متن کامل

Evaluation of rangeland gross primary productivity sensitivity potential to drought using ecosystem modelling

Gross primary productivity is one of the most important factors in the carbon cycle of terrestrial ecosystems. With global warming increase, the frequent drought events and the specific response of regional vegetation to these changes, it is essential to identify and quantify the relationships between climatic and GPP data in arid region. In this study, the responses of gross primary productivi...

متن کامل

Statistical downscaling of GRACE gravity satellite-derived groundwater level data

With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...

متن کامل

Climate Change Detection and Attribution: Beyond Mean Temperature Signals

A significant influence of anthropogenic forcing has been detected in globaland continental-scale surface temperature, temperature of the free atmosphere, and global ocean heat uptake. This paper reviews outstanding issues in the detection of climate change and attribution to causes. The detection of changes in variables other than temperature, on regional scales and in climate extremes, is imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008